martes, 18 de octubre de 2011

LEYES DE ELECTROQUIMICA

LA LEY DE COULOMB:
 Puede expresarse como:
La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa.

Definición: un culombio es la cantidad de electricidad transportada en un segundo por una corriente de un amperio de intensidad
Definición: la diferencia de potencial a lo largo de un conductor cuando una corriente con una intensidad de un amperio utiliza un vatio de potencia.

Definición: un faradio es la capacidad de un conductor con una diferencia de potencial de un voltio tiene como resultado una carga estática de un culombio.


LIMITACIONES DE LA LEY DE COULOMB:
  • La expresión matemática solo es aplicable a cargas puntuales estacionarias, y para casos estáticos más complicados de carga necesita ser generalizada mediante el potencial eléctrico.
  • Cuando las cargas eléctricas están en movimiento es necesario reemplazar incluso el potencial de Coulomb por el potencial vector de Liénard-Wiechert, especialmente si las velocidades de las partículas son grandes comparadas con la velocidad de la luz.
  • Para distancias pequeñas (del orden del tamaño de los átomos), la fuerza electrostática se ve superada por otras, como la nuclear fuerte, o la nuclear débil.
 DIAGRAMA DE FEYNMAN
Diagrama de Feynman ilustrando la interacción entre dos electrones producida mediante el intercambio de un fotón.
Un diagrama de Feynman, en física, es un dispositivo de conteo para realizar cálculos en la teoría cuántica de campos, inventada por el físico estadounidense Richard Feynman. El problema de calcular secciones eficaces de dispersión en física de partículas se reduce a sumar sobre las amplitudes de todos los estados intermedios posibles, en lo qué se conoce como expansión perturbativa. Estos estados se pueden representar por los diagramas de Feynman, que son más fáciles de no perder de vista en, con frecuencia, cálculos tortuosos. Feynman mostró cómo calcular las amplitudes del diagrama usando, las así llamadas, reglas de Feynman, que se pueden derivar del lagrangiano subyacente al sistema. Cada línea interna corresponde a un factor del propagador de la partícula virtual correspondiente; cada vértice donde las líneas se reúnen da un factor derivado de un término de interacción en el lagrangiano, y las líneas entrantes y salientes determinan restricciones en la energía, el momento y el espín.
Además de su valor como técnica matemática, los diagramas de Feynman proporcionan penetración física profunda a la naturaleza de las interacciones de las partículas. Las partículas obran recíprocamente en cada modo posible; de hecho, la partícula "virtual" intermediaria se puede propagar más rápidamente que la luz.[1] La probabilidad de cada resultado entonces es obtenida sumando sobre todas tales posibilidades. Esto se liga a la formulación integral funcional de la mecánica cuántica, también inventada por Feynman - vea la formulación integral de trayectorias.
INTERPRETACIÓN:
Los diagramas de Feynman son realmente una manera gráfica de no perder de vista los índices de Witt como la notación gráfica de Penrose para los índices en álgebra multilineal. Hay varios diversos tipos para los índices, uno para cada campo (éste depende de cómo se agrupan los campos; por ejemplo, si el campo del quark "up" y el campo del quark "down" se trata como campos diversos, entonces habría diverso tipo asignado a ambos pero si se tratan como solo campo de varios componentes con "sabores", entonces sería solamente un tipo) los bordes, (es decir los propagadores) son tensores de rango (2,0) en la notación de deWitt (es decir con dos índices contravariantes y ninguno covariante), mientras que los vértices de grado n son tensores covariantes de rango n que son totalmente simétricos para todos los índices bosónicos del mismo tipo y totalmente antisimétricos para todos los índices fermiónicos del mismo tipo y la contracción de un propagador con un tensor covariante de rango n es indicado por un borde incidente a un vértice (no hay ambigüedad con cual índice contraer porque los vértices corresponden a los tensores totalmente simétricos). Los vértices externos corresponden a los índices contravariantes no contraídos.
Una derivación de las reglas de Feynman que usa integral funcional gaussiana se da en el artículo integral funcional. Cada diagrama de Feynman no tiene una interpretación física en sí mismo. Es solamente la suma infinita sobre todos los diagramas de Feynman posibles lo que da resultados físicos.
Desafortunadamente, esta suma infinita es solamente asintóticamente convergente.
REGLAS DE FEYNMAN:
Para dar cuenta de todos los efectos cuánticos, es necesario reemplazar las componentes de los campos en las anteriores ecuaciones diferenciales por operadores autoadjuntos interpretables como genuinos operadores cuánticos. En general eso lleva a unos sistemas de ecuaciones que no sabemos como integrar exactamente, pero que admiten un tratamiento perturbativo, descomponiendo el operador de evolución temporal en series de potencias o serie perturbativa.
El cálculo de cada término de la serie anterior puede realizarse de manera casi automática con la ayuda de los llamados diagramas de Feynman, a los que se puede asociar unas reglas de Feynman. La precisión del cálculo depende de cuantos términos se consideran en la serie perturbativa anterior.
.TEORÍA PERTURBACIONAL
En mecánica cuántica, la teoría perturbacional o teoría de perturbaciones es un conjunto de esquemas aproximados para describir sistemas cuánticos complicados en términos de otros más sencillos. La idea es empezar con un sistema simple y gradualmente ir activando hamiltonianos "perturbativos", que representan pequeñas alteraciones al sistema. Si la alteración o perturbación no es demasiado grande, las diversas magnitudes físicas asociadas al sistema perturbado (por ejemplo sus niveles de energía y sus estados propios) podrán ser generados de forma continua a partir de los del sistema sencillo. De esta forma, podemos estudiar el sistema complejo basándonos en el sistema sencillo.
En particular al estudiar las energías de un sistema físico, el método consiste en identificar dentro del Hamiltoniano (perturbado) qué parte de éste corresponde a un problema con solución conocida (Hamiltoniano no perturbado en caso que su solución sea analítica) y considerar el resto como un potencial que modifica al anterior Hamiltoniano. Dicha identificación permite escribir a los autoestados del Hamiltoniano perturbado como una combinación lineal de los autoestados del Hamiltoniano sin perturbar y a las autoenergías como las autoenergías del problema sin perturbar más términos

LA ECUACIÓN DE SCHRÖDINGER
Fue desarrollada por el físico austríaco Erwin Schrödinger en 1925. Describe la evolución temporal de una partícula masiva no relativista. Es de importancia central en la teoría de la mecánica cuántica, donde representa para las partículas microscópicas un papel análogo a la segunda ley de Newton en la mecánica clásica. Las partículas microscópicas incluyen a las partículas elementales, tales como electrones, así como sistemas de partículas, tales como núcleos atómicos.
LIMITACIONES DE LA ECUACIÓN:
  • La ecuación de Schrödinger es una ecuación no relativista que sólo puede describir partículas cuyo momento lineal sea pequeño comparada con la energía en reposo dividida de la velocidad de la luz.
  • Además la ecuación de Schrödinger no incorpora el espín de las partículas adecuadamente. Pauli generalizó ligeramente la ecuación de Schrödinger al introducir en ella términos que predecían correctamente el efecto del espín, la ecuación resultante es la ecuación de Pauli.
  • Más tarde Dirac, proporcionó la ahora llamada ecuación de Dirac que no sólo incorporaba el espín para fermiones de espín 1/2, sino que introducía los efectos relativistas.


FUNDAMENTOS TEÓRICOS DE LAS LEYES DE NEWTON


gfd.gif (44590 bytes)


























































No hay comentarios:

Publicar un comentario